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Learning Hierarchical Spectral–Spatial Features for
Hyperspectral Image Classification

Yicong Zhou, Senior Member, IEEE, and Yantao Wei

Abstract—This paper proposes a spectral–spatial feature learn-
ing (SSFL) method to obtain robust features of hyperspectral
images (HSIs). It combines the spectral feature learning and spa-
tial feature learning in a hierarchical fashion. Stacking a set of
SSFL units, a deep hierarchical model called the spectral–spatial
networks (SSN) is further proposed for HSI classification. SSN
can exploit both discriminative spectral and spatial information
simultaneously. Specifically, SSN learns useful high-level features
by alternating between spectral and spatial feature learning oper-
ations. Then, kernel-based extreme learning machine (KELM),
a shallow neural network, is embedded in SSN to classify image
pixels. Extensive experiments are performed on two benchmark
HSI datasets to verify the effectiveness of SSN. Compared with
state-of-the-art methods, SSN with a deep hierarchical archi-
tecture obtains higher classification accuracy in terms of the
overall accuracy, average accuracy, and kappa (κ) coefficient of
agreement, especially when the number of the training samples
is small.

Index Terms—Hierarchical learning, hyperspectral image
classification, kernel-based extreme learning machine,
spectral–spatial feature.

I. INTRODUCTION

HYPERSPECTRAL sensors can capture hundreds of spec-
tral channels for each image pixel from ultraviolet to

infrared nowadays. This characteristic makes it possible to
accurately discriminate different materials of interest [1], [2].
The classification of hyperspectral image (HSI) has become
one of the most important tasks for many applications includ-
ing both commercial and military domains. However, the high
dimensionality of HSIs causes several theoretical and practical
challenges to classification [1], [3].

In order to deal with the problems encountered in HSI
classification, many methods have been proposed in the past
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few years. Dimensionality reduction is an effective way
to improve the HSI classification accuracy [4], [5]. Many
dimensionality reduction methods have been adopted for
HSI classification. For instance, locally linear embedding has
been utilized to reduce the dimensionality of HSIs [6]. To
make use of the label information, some supervised dimen-
sionality reduction methods have been proposed to extract
HSI features [5], [7]. Recently, semi-supervised methods have
also been proposed for HSI dimensionality reduction [4], [8].
Apart from dimensionality reduction algorithms, designing
effective spectral classifiers is another possible way to promote
the classification accuracy. Support vector machine (SVM),
a commonly used classifier [9], has been used successfully
for HSI classification [10]. However, choosing suitable ker-
nel functions, kernel-specific parameters, and regularization
parameters is the major concern in the design of SVM [11].
Recently, kernel-based extreme learning machine (KELM) has
been proposed [12]. Compared with SVM, KELM is faster and
has good generalization ability [12], [13]. It has been applied
to HSI classification [14], and the results confirm that it is
comparable in accuracy with SVM and has lower computa-
tional complexity. However, most of these existing methods
make use of only the spectral information of HSIs.

To cope with this problem, spectral–spatial-based
classification techniques have received considerable
attentions [15]–[23]. Many techniques have been adopted to
make use of spatial information of HSIs, such as morpho-
logical profiles [24], Markov fields [1], or Gabor filters [25].
These spectral–spatial-based methods assume that pixels
within a local region usually represent the same material [25]
and have achieved promising results [20]–[22], [26].
Quesada-Barriuso et al. created an extended morphological
profile (EMP) from the wavelet features to obtain spectral–
spatial features [27]. In [28], a spectral–spatial classification
method for HSIs was proposed using morphological compo-
nent analysis-based image separation rationale in the sparse
representation. Maximizer of the posterior marginal by loopy
belief propagation (MPM-LBP) was proposed by Li et al. [29].
It exploits the marginal probability distribution from both
the spectral and spatial information. Zhong et al. [30]
developed a discriminant tensor spectral–spatial feature
extraction method for HSI classification. Kang et al. [31]
proposed a spectral–spatial classification framework based on
edge-preserving filtering (EPF), where the filtering operation
achieves a local optimization of the probabilities. Gabor filters
and local binary pattern (LBP) were introduced for extracting
local spatial features of HSIs in [32] and [33], respectively.
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Soltani-Farani et al. [34] presented spatial aware dictionary
learning (SADL) method for HSI classification. It is a
structured dictionary-based model incorporating both spectral
and contextual characteristics of spectral samples. Recently,
Li et al. developed a new framework for the classification of
HSIs that pursues the combination of multiple features [18].
It can deal with linear and nonlinear class boundaries in
HSI data.

However, most of these methods do not extract
spectral–spatial features in a hierarchical fashion. Recent
studies show that the hierarchical deep model can extract more
abstract and invariant features of data. It has the ability of
yielding higher classification accuracy than those traditional
and shallower classifiers [35]–[39]. Consequently, designing a
deep learning model with spectral and spatial information is
a promising direction to be explored. Chen et al. [35] applied
a deep learning method to HSI classification. However, they
did not design the structure of the deep learning methods
according to the characteristics of HSIs.

Based on above discussions, this paper presents a hier-
archical HSI classification model called spectral–spatial
networks (SSN). Generally, HSI classification systems have
the delicate task of describing a smooth land cover using
spectral information with a high within-class variability. It
is crucial to exploit the nonlinear characteristics of HSIs.
The proposed method intends to learn the discriminative fea-
tures using the hierarchical deep architecture. It can extract
spectral–spatial features by iteratively abstracting neighboring
regions and recomputing representations for new regions. In
this way, the within-class variability will be reduced and the
classification maps become smoother. Thus, the hierarchical
deep architecture, which extracts more abstract and effective
features of the HSI data, can overcome the problems faced
by the shallow architecture. The main differences between the
proposed method and other deep learning methods are that the
convolutional filters used in the proposed method are learned
directly from the images rather than learned by the stochastic
gradient descent method used in the traditional deep learn-
ing methods, and that the structure of the proposed method is
specially designed based on the characteristics of the HSI.
The major contributions of this paper can be summarized
as follows.

1) A new spectral–spatial feature learning (SSFL) method
is proposed. It combines the spectral feature learning
and spatial feature learning in a hierarchical fashion.

2) Based on SSFL, SSN as a feedforword network is
designed for HSI classification. It can learn discrim-
inative spectral–spatial features of HSIs explicitly by
embedding the simple supervised learning methods in
the deep hierarchical architecture.

3) It provides a new way to learn spectral–spatial fea-
tures in a hierarchical fashion. In the similar way, more
hierarchical methods can also be designed.

4) SSN combines the simple subspace learning method and
KELM in the framework of deep hierarchical learning.
It achieves higher accuracy compared with state-of-the-
art methods, especially when the number of the training
samples is small.

The rest of this paper is organized as follows. Section II
briefly reviews deep learning and KELM. The proposed SSFL
method is given in Section III. It combines the spectral
information and spatial context to promote classification per-
formance. Section IV presents a detailed description of the
proposed HSI classification method called SSN. Section V
shows experimental results on two widely used HSI datasets
and the performance comparisons with various methods.
Finally, Section VI presents the conclusions and possible
future research.

II. RELATED WORK

The motivation of this paper is to design a deep hierarchi-
cal model for HSI classification. To make use of the spectral
and spatial information of HSIs, the proposed method com-
bines the deep hierarchical architecture, subspace learning, and
KELM. Consequently, deep learning and KELM are reviewed
firstly.

A. Deep Learning

Deep learning, inspired by the mechanism of human vision,
recently attracted more and more attentions due to its good
performance in many fields such as speech recognition, com-
puter vision, and natural language processing [40]–[42]. The
intention of deep learning is to discover more abstract repre-
sentations in higher levels [43]. It involves a class of models
to hierarchically learn high-level features of input data with a
deep hierarchical architecture. Deep learning has the general
formulation as

f (x) ≈ g1(g2(. . . (gn(x)) . . .)) (1)

where x is the input, gi(i = 1, . . . , n) is the operation on
the ith layer, and f (x) is the new representation of x. The
input of a higher layer is the output of its previous layer
in the deep learning models. In this way, it can progres-
sively lead to more abstract and complex features at higher
layers. More abstract features are generally invariant to most
local changes of the input. Commonly used deep learning
models include deep belief networks [36], deep Boltzmann
machines [44], stacked auto-encoders (SAE) [45], and convo-
lutional neural networks. Recent study also shows that deep
models can give better approximations to nonlinear functions
than shallow models [46], [47].

HSI classification is an important pattern recognition task.
The obtained features are expected to have the ability to dis-
criminate pixels from different classes while being invariant to
intraclass variability. For these reasons, SSN as a feedforward
network is proposed for HSI classification in this paper. It can
fuse the spectral and spatial information on different scales in
a hierarchical fashion.

B. Kernel-Based Extreme Learning Machine

ELM aims at training single hidden layer feedforward neu-
ral networks (SLFN) [48]–[50]. It uses an idea to train SLFN,
which is the hidden-node parameters are randomly gener-
ated based on certain probability distributions. ELM is closely
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related to some previous work, such as [51]–[53]. A simi-
lar idea randomly generating the node parameters based on
sparse representation has also been investigated in the match-
ing problem, such as in [54]–[57]. ELM provides not only the
smaller training error but also the better performance. Stacked
ELM (S-ELM) divides a single large ELM network into mul-
tiple stacked small ELMs for solving large and complex data
problems [58], and Kernel-based ELM (KELM) uses a kernel
function to improve the stability of ELM [12].

Let N training samples be {xi, yi}(i = 1, . . . , N), where
xi ∈ Rd and yi = (yi,1, . . . , yi,C) ∈ RC indicate the class. Here
the training samples belong to C classes and

yi,j =
{

1, xi belongs to the jth class
0, otherwise.

(2)

The output function with L hidden neurons is

fL(xi) =
L∑

j=1

βjhj(xi) = h(xi)β = yi (3)

where β = (
β1β2 . . . βL

)T is the weight vector between
the hidden layer and the output layer, and h(xi) =
(h1(xi), . . . , hL(xi)) is the hidden-layer output corresponding
to the input xi. The training pixels are mapped onto the
L-dimensional feature space by h(xi). N equations coming
from (3) can be written in a compact form and represented by
Hβ = Y, where H is the output matrix of the hidden layer

H =
⎛
⎜⎝

h(x1)
...

h(xN)

⎞
⎟⎠ =

⎛
⎜⎝

h1(x1) . . . hL(x1)
...

h1(xN) . . . hL(xN)

⎞
⎟⎠ (4)

and

Y = (
y1y2 . . . yN

)T (5)

is the expected output matrix of samples. The minimal norm
least square solution of ELM is

β = H∗Y (6)

where H∗ is the Moore–Penrose generalized inverse of H.
Here the orthogonal projection method can be used to
obtain H∗, that is

H∗ = HT(HHT)−1
. (7)

In order to obtain a stable solution and better generalization
performance, one can regularize HHT by adding a positive
value ρ, then we have

f (xi) = hβT = h(xi)HT
(

I
ρ

+ HHT
)−1

Y. (8)

When the feature mapping h(xi) is unknown, we can define a
kernel matrix for ELM as follows:

K(X, X) = HHT : k
(
xi, xj

) = h(xi) ∗ h
(
xj
)T

. (9)

A lot of kernel functions can be used in this method, and they
do not need to satisfy the Mercer’s theorem. In this paper, the

Fig. 1. Architecture of SSFL.

commonly used radial basis function kernel is selected. The
output of the KELM classifier is

f (xi) = h(xi)HT
(

I
ρ

+ HHT
)−1

Y

=
⎛
⎜⎝

K(xi, x1)
...

K(xi, xN)

⎞
⎟⎠

T(
I
ρ

+ K(X, X)

)−1

Y. (10)

The label of the input data is determined by the index of the
output node with the highest output value [48].

KELM has been widely used for many applications. In this
paper, this effective shallow learning machine is embedded
into the hierarchical architecture to obtain a deep learning
model.

III. SPECTRAL–SPATIAL FEATURE LEARNING METHOD

In order to design the deep hierarchical learning method,
SSFL is proposed firstly in this paper. SSFL consists of
the spectral feature learning and spatial feature learning
(see Fig. 1). Next, we will describe them in detail.

A. Spectral Feature Learning

The training set is denoted by IIItr = {III1, III2, . . . , IIIN},
where IIIj ∈ Rd′

( j = 1, 2, . . . , N) is the jth training
pixel. These labeled samples can be divided into C classes.
To extract discriminative spectral features from the train-
ing pixels, a supervised subspace learning method, linear
discriminant analysis (LDA) [59] is used. LDA aims at
maximizing the between-class scatter while minimizing the
within-class scatter [59]. Assuming that Kspe is the number
of filters in this stage and Wspe ∈ Rd′×Kspe is the filter set.
For the cth class, the mean of the new representation is
given by

mc = 1

Nc

Nc∑
n=1

WT
speĨ

c
n (11)
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Fig. 2. Filtering operations on the spectral leaning stage.

where Nc is cardinality of the cth class set and Ĩ
c
n is the nth

training pixel belonging to the cth class. Let Sw be the within-
class scatter, that is

Sw =
C∑

c=1

pc
1

Nc

Nc∑
i=1

(
WT

speĨ
c
i − mc

)(
WT

speĨ
c
i − mc

)T
(12)

where pc = Nc/N. The total mean of the new representation
of training pixels is given by

m = 1

N

N∑
n=1

WT
speĨn. (13)

Therefore, the between-class scatter of the training pixels is
given by

Sb =
C∑

c=1

pc(mc − m)(mc − m)T . (14)

LDA maximizes the ratio of between-class scatter to within-
class scatter using a family of filters, that is

max
Wspe∈Rd′×Kspe

= WT
speSbWspe

WT
speSwWspe

. (15)

The filters are known as the Kspe largest eigenvec-
tors (eigenvectors correspond to a number of largest
eigenvalues) of

Sbwspe = λSwwspe. (16)

Once the filters are obtained, the normalized HSI is filtered
pixel by pixel (see Fig. 2). Note that the filters are learned
from the data, and other subspace learning methods can also
be used to learn filters [60], [61]. We can find that the output
of this stage or layer has Kspe maps.

B. Spatial Feature Learning

For the output of the spectral feature learning, the spatial
information will be exploited using adaptive weighted fil-
ters (AWFs). AWF is a spatial filter within a block region,
where the central pixel (vector) is replaced with the generated
feature according to the weights assigned to its neighbors. The
adaptive weights can be defined by

wi,j
spa = si,j∑m×m

1 si,j
(17)

Fig. 3. AWF whose size is 3 × 3.

Fig. 4. Weighted filtering at the spatial feature learning stage.

where m × m is the size of the filter and

si,j = exp

(
−
∥∥p0 − pi,j

∥∥2

σ

)
(18)

is the similarity measure. In (18), p0 and pi,j are the central
pixel and the pixel located in the ith row and jth column,
respectively. σ can be adaptively determined by

σ = 1

std(d)
(19)

where

d(i−1)×m+j =‖ p0 − pi,j ‖2 . (20)

In Fig. 3, an AWF whose size is 3 × 3 is given. Note that
AWF has different weights on different positions.

Once the weights are obtained, we can generate a new rep-
resentation of the central pixel by weightedly summing the
neighboring pixels. From the definition of AWF, we can find
that the defined filters are smoothing filters. The weights are
defined by the similarity. In this case, the weights between the
central pixel and its neighboring pixels within the same class
are larger. On the other hand, the pixels within a local region
usually represent the same material in the HSI. Consequently,
the obtained pixels within the same class may become more
similar. For this reason, we can say that AWF ensures that
pixels in the same class have similar features. The process
is illustrated in Fig. 4, where the output is our obtained
spectral–spatial feature.

In practice, HSIs may contain homogenous regions with
different sizes. Consequently, the multiscale AWFs are used
to capture different spatial structures of HSIs. In this way,
the output of the previous stage can be filtered by the AWFs
on Kspa scales. For a given pixel, the spectral–spatial features
on different scales can be concatenated into a new “pixel.”
Finally, the output of SSFL can be taken as a new “HSI,”
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Fig. 5. Flowchart of the proposed SSN.

where the number of the bands is Kspe × Kspa. When per-
forming SSFL in an iterative way, we are able to form a deep
hierarchical architecture.

IV. SPECTRAL–SPATIAL NETWORKS

This section proposes a deep hierarchical SSFL model
called SSN. It contains a set of stacked SSFL units (SSSFLUs).
The flowchart of SSN is given in Fig. 5. First, discriminative
spectral–spatial features are learned by SSSFLUs which lead
to a deep learning architecture. Then, the classification stage
assigns a label to each pixel. SSN is composed of three stages:
1) image preprocessing; 2) SSSFLUs; and 3) classification.

A. Image Preprocessing

In this stage, an HSI is normalized. Suppose that the max-
imum and minimum of the input image are Max and Min,
respectively. The radiance values are normalized to [0, 1] in
the following way:

Ĩ̃ĨIij(n) = IIIij(n) − Min

Max − Min
(21)

where Ĩ̃ĨIij(n) is the nth component of the pixel in the ith row
and jth column in the HSI. In this way, a normalized HSI can
be obtained.

B. SSSFLUs

In this stage, a normalized HSI is fed into the SSSFLU.
Several SSSFLUs form a deep hierarchy with multiple layers.
Each layer receives its input from the output of the previous
layer. Note that the projection directions in the spectral feature
learning are obtained in the training stage. AWFs are obtained
according to the data to be processed.

C. Classification

In order to perform classification utilizing the learned fea-
tures, we feed the learned spectral–spatial features to a KELM
classifier. The output-layer size is set to be the same as the
total number of classes, and the input has the same size as
the dimension of output features of SSSFLUs (see Section II).
Because KELM is implemented as a single-layer neural net-
work, it can be integrated with the former layers of networks to
obtain a deep model. This stage consists of two layers, where
the input layer is the output layer of the previous SSSFLUs.

Algorithm 1 SSN: Training Procedure

Input: I ∈ Rm′×n′×d′
, Itr = [I1 . . . IN].

Output: the SSN model.
1: Image Normalization.
2: for l = 1 : L do
3: Perform LDA to obtain Kl

spe projection directions.
4: for i = 1 : m′ do
5: for j = 1 : n′ do
6: Project the pixel in the ith row and jth column

to Kl
spe projection directions.

7: end for
8: end for
9: for q = 1 : Kl

spa do
10: Perform adaptive weighted filtering on the qth

scale.
11: end for
12: Concatenate the filtered images on different scales.
13: end for
14: Feed spectral-spatial features to KELM to train a classifier.

Algorithm 2 SSN: Test Procedure

Input: I ∈ Rm′×n′×d′
.

Output: Labels of the test pixels.
1: Image Normalization.
2: for l = 1 : L do
3: for i = 1 : m′ do
4: for j = 1 : n′ do
5: Project the pixel in the ith row and jth column

to Kl
spe projection directions.

6: end for
7: end for
8: for q = 1 : Kl

spa do
9: Perform adaptive weighted filtering on the qth

scale.
10: end for
11: Concatenate the filtered images on different scales.
12: end for
13: Feed spectral-spatial features to the trained KELM classi-

fier.
14: Output the labels of test pixels.

In summary, the training procedure of the proposed SSN is
shown in Algorithm 1, where I ∈ Rm′×n′×d′

is the HSI to be
processed, L is the number of SSSFLUs, Kl

spa and Kl
spe are the

numbers of the spatial filters and spectral filters in the lth units,
respectively. In the training stage, the projection directions on
different layers and the KELM classifier are learned. Similarly,
the testing procedure can be found in Algorithm 2.

As we will see through extensive experiments, the SSN
model is simple but effective to make full use of the
spectral–spatial information. In SSFLUs, LDA can ensure the
pixels within the same class have the similar features no mat-
ter how far away in the spatial space they are, and AWF is to
ensure the neighbor pixels within the same class have similar
features.
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TABLE I
NUMBERS OF SAMPLES IN EACH GROUND-TRUTH CLASS

IN THE INDIAN PINES DATASET

TABLE II
NUMBERS OF SAMPLES IN EACH GROUND-TRUTH CLASS

IN THE UNIVERSITY OF PAVIA DATASET

TABLE III
OAS OF DIFFERENT METHODS ON THE AVIRIS INDIAN PINES DATASET

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Datasets and Experimental Setups

In our experiments, two benchmark HSIs are used to verify
the effectiveness of SSN. The first image is called Indian Pines.
It was gathered by the AVIRIS sensor over the Indian Pines test
site in North-western Indiana. This image scene has the size of
145×145 pixels. The ground truth available is designated into
16 classes. The name and quantity of each class are reported
in Table I. The number of bands has been reduced to 200 by
removing bands covering the region of water absorption. This
scene constitutes a challenging classification problem due to

Fig. 6. OAs of different methods with different numbers of training samples
on the Aviris Indian Pines dataset.

TABLE IV
SUMMARY OF PARAMETERS ON THE AVIRIS INDIAN PINES DATASET

the significant presence of mixed pixels in all available classes
and of the unbalanced number of available labeled pixels per
class [29].

The second image used in experiments is the University of
Pavia image, which was acquired by the ROSIS sensor during
a flight campaign over Pavia, northern Italy. This scene has
the size of 610 × 340 pixels (covering the wavelength range
from 0.4 to 0.9 μm). Nine ground-truth classes are used in
our experiments. In our experiments, 12 most noisy bands are
removed and finally 103 out of the 115 bands are used. The
class descriptions and sample distributions for this image are
given in Table II. The total number of labeled samples in this
image is 43 923.

For both images, r% (r = 1, 2, 3, 4, 5) of labeled samples
from each class are randomly chosen for training, and the
remaining samples are used for testing. The window sizes of
the AWFs are m = 3, 5, . . . , 11. In order to deal with the
pixels on the border of the HSI, we pad the image with mir-
ror reflections of itself. In this paper, different methods are
compared based on the overall accuracy (OA), average accu-
racy (AA) and κ coefficient, where OA is the percentage of
correctly classified pixels in the testing set, AA is the mean
of class-specific accuracy values, and κ is the percentage of
agreement corrected by the number of agreements that would
be expected purely by chance [62]. All experiments are carried
out using MATLAB on an Intel i7-4790 3.60 GHz machine
with 12 GB RAM.

B. Experimental Results on the Indian Pines Dataset

Table III and Fig. 6 give OAs of different methods, where
MH-KELM is the multihypothesis-based KELM [26], [63].
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TABLE V
CLASS-SPECIFIC CLASSIFICATION ACCURACIES (IN PERCENTAGE), OA (IN PERCENTAGE), AA (IN PERCENTAGE),

AND κ COEFFICIENTS FOR THE AVIRIS INDIAN PINES DATASET

The experimental results reported here are averaged results
over ten random runs, where the parameters are given in
Table IV. We can find that the proposed SSN performs the best,
especially when the number of the training samples is small.
The experimental results of SVM, KELM, and PCA-KELM
given in Table III and Fig. 6 are obtained by using spectral
information only. We can find that these spectral–spatial-based
methods perform much better than spectral-based methods.
Consequently, our experiments also show the advantage of
exploiting spatial information in HSI classification. Table III
also shows that the accuracies of SSN have small standard
deviations. This indicates that SSN has a stably excellent
classification performance.

The classification accuracy for each class, OA, AA, and the
κ coefficient are reported in Table V, where 1% of labeled
samples from each class are randomly chosen for training.
SSN shows a significant gain in accuracy, where the improve-
ment in AA is about 6%. In addition, we perform the paired
t-test between SSN and other methods. Fig. 7 shows the
detailed statistics of the κ coefficients of different methods,
where the central mark is the median value of κ . The edges
of boxes are the 25th and 75th percentiles. Lines extend-
ing vertically from the boxes indicate variability outside the
upper and lower quartiles. Abnormal outliers are shown as red
“+”s [35]. Paired t-test results show that improvements on κ

are statistically significant (at the level of 95%). This is due
to the discriminative spectral information learning as well as
the spatial dependence modeling in the proposed SSN. The
full classification maps given in Fig. 8 also demonstrate the
effectiveness of SSN.

C. Experimental Results on the University of Pavia Dataset

The experimental results are given in Table VI and Fig. 9,
where the parameters are given in Table VII. As can be
observed, SSN performs the best, especially when the training

Fig. 7. Box plot of the κ coefficients of different methods on the Aviris
Indian Pines dataset.

data are limited (as low as 1%). We can find that the stan-
dard deviations of the SSN’s OAs are smaller than those of
other methods. This also indicates that SSN is more robust.
SSN performs better than other deep learning models, and
Chen’s method achieves accuracy of 98.52% with 60% of the
tagged samples used as the training set [35]. It also shows
that SSN has a low sample complexity. This may be due to
the fact that SSN is designed to directly incorporate opera-
tions to learn discriminative features. The same setup with
that in [35] is also used, and the experimental results are
given in Table VIII, where SAE-LR-S and SAE-LR-J are
SAE with a logistic regression on spatial information and
joint spectral–spatial information, respectively. The results of
SAE-LR-S and SAE-LR-J are directly cited from the Chen’s
paper. We can find that SSN yields higher accuracy.

Table IX shows the OA, AA, κ , and individual class accu-
racies obtained in our comparisons, where 1% of labeled
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Fig. 8. Classification maps of the Indian Pines dataset using different methods. (a) SVM. (b) KELM. (c) PCA-KELM. (d) MH-KELM. (e) EPF. (f) MPM-LBP.
(g) SADL. (h) SSN.

TABLE VI
OAS OF DIFFERENT METHODS ON THE UNIVERSITY OF PAVIA DATASET

Fig. 9. OAs of different methods with various numbers of training samples
on the University of Pavia dataset.

samples from each class are randomly chosen for training. The
experimental results presented here are the averaged results
over ten random runs. As can be seen, SVM has poor results
because it uses only spectral information. Table IX also shows

TABLE VII
SUMMARY OF PARAMETERS ON THE UNIVERSITY OF PAVIA DATASET

TABLE VIII
COMPARISON WITH DEEP LEARNING-BASED METHODS

ON THE UNIVERSITY OF PAVIA DATASET

J

Fig. 10. Box plot of κ of different methods on University of Pavia dataset.

that the proposed SSN significantly outperforms other state-
of-arts methods. Thus, our SSN can effectively exploit the
spatial information. For more details, Fig. 10 shows statistical



ZHOU AND WEI: LEARNING HIERARCHICAL SPECTRAL–SPATIAL FEATURES FOR HSI CLASSIFICATION 1675

TABLE IX
CLASS-SPECIFIC CLASSIFICATION ACCURACIES (IN PERCENTAGE), OA (IN PERCENTAGE), AA (IN PERCENTAGE),

AND κ COEFFICIENTS FOR THE UNIVERSITY OF PAVIA DATASET

Fig. 11. Classification maps of the University of Pavia dataset using different methods. (a) SVM. (b) KELM. (c) PCA-KELM. (d) MH-KELM. (e) EPF.
(f) MPM-LBP. (g) SADL. (h) SSN.

evaluations of κ coefficients. SSN has small standard deviation
of κ . It also demonstrates the advantages of SSN. The full clas-
sification maps of different methods are given in Fig. 11. We
can find that the maps of the spectral–spatial-based methods
are smoother.

D. Discussion

In order to further analyze the proposed SSN, we test its per-
formance on more experiments. The experimental results on
the Indian Pines dataset are reported and the same conclusions
can be made on the other dataset.

First, in order to demonstrate the effectiveness of the
spectral–spatial strategy adopted by SSN, we compare
SSN with KELM and LDA+KELM, where KELM and
LDA+KELM make use of only the raw pixels. Table X
shows the experimental results, where 1% of all labeled data
for training. It is observed that our SSN can improve the
classification accuracy significantly. The experimental results
show that the proposed hierarchal SSFL module is important
to SSN.

Second, we show effects of the depth on the classification
accuracy. The depth plays a key role in SSN. We train a



1676 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 7, JULY 2016

TABLE X
CLASSIFICATION ACCURACIES ON THE

INDIAN PINES DATASET

Fig. 12. Effect of different depths on OAs on the Indian Pines dataset.

Fig. 13. Verify the overfitting on the Indian Pines dataset.

series of SSN with different depths, but with fixed projec-
tion direction numbers (15) and scale numbers (5) to see how
the depth of the features effects classification accuracies. As
shown in Fig. 12, more layers usually lead to a higher classifi-
cation accuracy, where the depth is indicated by the number of
SSFLUs (each SSFLU contains two layers). This helps us to
determine how many layers are needed to obtain higher clas-
sification accuracy. Furthermore, we also find that too many
layers and a small number of labeled training samples can
result in overfitting to the training data. Fig. 13 shows that the
proposed method with more layers has a slightly overfitting,
where the number of SSSFLUs is set to 4.

Third, we compare the proposed features with common
features (LBP, scale-invariant feature transform (SIFT), and
Gabor) used in image classification. The experimental results

TABLE XI
COMPARISONS WITH COMMON FEATURES

USED IN IMAGE CLASSIFICATION

TABLE XII
COMPARISONS OF DIFFERENT CLASSIFIERS

are given in Table XI, where the experiment setup is the
same with that in [33]. These results show that the pro-
posed method performs better than these benchmark features.
Consequently, we can conclude that the proposed method can
learn spectral–spatial features efficiently.

Finally, in order to explain why KELM is used in the final
stage, the comparisons with multiple-class SVM and soft-max
classifier are given in Table XII (the experiment setup is also
the same with that in [33]). We can find that KELM leads
to a higher classification accuracy and is fast. Consequently,
KELM is used in the final stage for classification.

VI. CONCLUSION

In this paper, a hierarchical spectral–spatial-based HSI clas-
sification method called SSN has been proposed. It consists
of SSSFLUs and KELM. In each SSFLU, the spectral feature
learning stage learns discriminative spectral features while the
spatial feature learning stage catches the spatial information
using the multiscale AWFs. KELM is embedded to the hierar-
chical architecture to obtain classification results. Extensive
experiments have been performed on the Indian Pines and
University of Pavia datasets to verify the effectiveness of
SSN. Experimental results have demonstrated good robustness
and accuracy of the proposed SSN. It has been shown that
hierarchical spectral–spatial features are useful for HSI clas-
sification. SSN is also attractive for advanced classification of
the HSI datasets with limited training samples.

Although the experiments confirm that SSN is suitable for
HSI classification, several questions remain to be investigated
in our future work.

1) In SSN, the spectral-spatial features are learned through
the simple feature learning and image processing meth-
ods. It is interesting to mathematically analyze and
justify its effectiveness and investigate new methods
based on other advanced feature learning methods.

2) We have demonstrated that a deeper hierarchical archi-
tecture always leads to a higher classification accuracy,
however, a too deep architecture will act in an opposite
way. It is interesting to determine the optimal depth for
a given HSI.
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